
Proprietary to PostgreSQL

Moving your data to Open Source

Josh Williams

Who is this Josh?

● Technical manager at Nexus Technology in
Columbus, Ohio.

● Nexus: Small/Medium Business IT
Consulting and Outsourcing

● Light user of PostgreSQL for 4-5 years now.
● But...

Don't shoot! I'm on your side now!

Why?

● Software is constantly moving, evolving:
Proprietary Upgrades (New Features): $$$

● Software has a lifespan:
– Support and Maintenance Agreements = $$+

● Closed Source Administration = $$
– $$ → Happy Vendor Executives

● Open Source Administration = $$
– $$ → Happy Employees, Happy Community

● PostgreSQL = <3

All We Have To Do

● CREATE OR REPLACE RDBMS;
● ERROR: syntax error at or near "ID10T"

Our Example

● Spam Quarantine / Statistics Engine
● Moving from MS SQL Server 2000, ~15 GB
● Target: PostgreSQL 8.3 on Windows 2003
● Three Components

– Mail Indexing Process, In House Software, C#
– User Web Console, In House, ASP.NET
– Mail Server Software, Commercial – Connects to

DB to get user's white/black list info
● Reasons to move

– SQL Server locking, concurrency problems
– Use unavailable features: Partitioning
– 2000?! PG 8.3 is 8 years more advanced!

Proprietary to PostgreSQL
Procedure Outline

● Application Compatibility
● Compare DB System Features
● Rewrite Embedded Logic
● Migrate Schema
● Transfer Data
● Make the Application Switch

Application Connectivity

● PostgreSQL DB Driver available?
● Does the application support PostgreSQL?

– Proprietary software
– Vendor not receptive

● Database abstraction layer may be available
● In Our Example:

– Web / Index Process, .NET: ODBC (or Npgsql)
– Mail Server: ODBC only – but hey, it works!

Compare DBMS Capabilities

● Data Types
● Syntax

– SERIAL vs IDENTITY vs AUTO_INCREMENT ...
– Functions used and equivalents
– table1 JOIN table2 USING(id_column)
– SELECT TOP n ... versus SELECT ... LIMIT n

● Procedural Languages, Embedded Logic
– PL/SQL → PL/pgSQL
– Stored Procedures?
– Anonymous blocks?!

● Partitioning (Inheritance, Rule System)

Our Example: Data Types
The “Big” Table

● \d message
– mid character(20)
– mdate datetime
– subject varchar(250)
– recipient varchar(200)
– fromline varchar(200)
– msize integer
– score numeric(4,2)
– scoreflags varchar(200)
– status integer

● datetime → timestamp
● Otherwise, table fits
● Issues in other tables:

– bit → boolean
– bit → integer?
– uniqueidentifier →

UUID (contrib)

Our Example: Syntax

● Syntax Changes:
– SUBSTRING(), CHAR_INDEX() → POSITION()

Luckily not used in application
– User defined-functions:

● SQL Server requires calls to be user-qualified.
● If you don't want to touch the app, create a schema.

– Quoted identifiers: No more [Square Brackets]
● Procedure Changes:

– We have 10 functions/SP's, maybe 2 non-trivial.
– Rewrite app to execute SELECT function();

Opportunity for Rewrite

● New feature set has now been identified...
● Can the application benefit from any?
● How much effort to change the application?
● Keep in mind the rewrite may fix all that

we've discussed (Connectivity, Syntax, etc...)

Rework Embedded DB Logic

● Stored Procedures – Out!
● Functions – In!

– Compatibility: Out parameters (8.1)
– Return multiple cursor pointers (result sets)

● Select appropriate language:
– PL/pgSQL, PL/Perl, PL/PHP
– Whatever works for you!

Example: Function Comparison

MS SQL...
CREATE FUNCTION [InTimeWindow] (@now AS datetime, @start AS datetime, @end AS datetime)
RETURNS bit AS
BEGIN

DECLARE @currenttime datetime;
DECLARE @shortstart datetime;
DECLARE @shortend datetime;

SET @currenttime = @now - CAST(FLOOR(CAST(CAST(@now AS datetime) AS float)) AS datetime)
SET @shortstart = @start - CAST(FLOOR(CAST(CAST(@start AS datetime) AS float)) AS datetime)
SET @shortend = @end - CAST(FLOOR(CAST(CAST(@end AS datetime) AS float)) AS datetime)

IF (@currenttime > @shortstart AND @currenttime < @end) RETURN 1

RETURN 0
END

PL/pgSQL...
CREATE FUNCTION intimewindow(now time, starttime time, endtime time)
RETURNS boolean AS
$BODY$
BEGIN

RETURN now BETWEEN starttime AND endtime;
END;
$BODY$ LANGUAGE plpgsql IMMUTABLE;

Rework PL Use in Application

● Stored Procedures → SELECT function();
– ORM: Building a Stored Procedure command ~

Building a prepared statement
● Anonymous Blocks: Same thing

– Will likely make app code less complicated!

Migrate Schema

● Find a good utility, pull out SQL statements
– SQLFairy has been recommended

● Old *NIX tools (like sed) are your friend
● Or if your schema is small enough...

– Tweak for PostgreSQL in a text editor
– Take advantage of proper data types

● Load in to PG (in a transaction!)
● Load in some sample data, Test, Test, Test!

Techniques to
Cut Down On Downtime

● Data on Old System == Data on New System
● Replication

– 3rd Party (has to speak both languages)
– Home Grown

● Link old system to new
– (or vice versa?)
– dbilink, ODBC connector

Transfer Data

● If Replication/Links work, take your time:
● ETL 3rd Party utility

– Has to talk to both systems, easier to find
● Replication 3rd utility

– May be more difficult to find, reliable?
● Home grown utility
● Test, test again!
● If not...

Transfer Data AND
Make Application Switch

● Plan & Invoke Downtime
● Place old system in read-only state
● Do the move...
● Test!
● Switch out Application/Connection Settings
● If Something Bad Happens, Don't Panic!

– Roll application back, old database is still there
– Figure out what went wrong, adjust your plan

Next Step In Our Example...

● Time for ETL:
● SQL Server → DTS → ODBC → PG
● An hour later:

Attempt #2...

● DTS → Text Files → COPY FROM ...
● The “big” table wrote out an 8 GB text file.
● Took a few tries...

– Who knew email subjects could have line feeds?
– Or tabs in SMTP “MAIL FROM” (it's spam, go fig)

● Incidentally: 15G SQL Server ~ 18.5G PG

Proprietary to PostgreSQL
Procedure Outline

● Application Compatibility
● Compare DB System Features
● Rewrite Embedded Logic
● Migrate Schema
● Transfer Data
● Make the Application Switch
● Get some sleep

The End

● Discuss!

Proprietary to PostgreSQL

Contact Josh:
joshwilliams@ij.net

Slides up at
http://www.dbahumor.com/P2P/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

