
Get It Back

A New PostgreSQL Admin’s Guide to
Redundancy and Recovery

Why should I listen to Josh?

● Dev&&Ops at End Point Corporation

● Postgres for (mumble)-teen years
● Or don’t?

Backing Up Postgres

Backing Up Postgres - Don’t Do This

$ while :
> cp -r /var/lib/postgresql /var/lib/postgresql.bak
> sleep 3600
> done

Backing Up Postgres - Don’t Do This

$ while :; do
> cp -r /var/lib/postgresql /var/lib/postgresql.bak
> sleep 3600
> done

Shared Buffers in RAM

Tables on Disk

Shared Buffers in RAM

Tables on Disk

Write Ahead Log

In Recovery

Tables on Disk

Write Ahead Log

Shared Buffers in RAM

Tables on Disk

WAL Stream Server B

Replication

Replication

● Physical, aka Streaming Replication

● Logical Replication
○ Sort of built-in, >= 9.4

○ Trigger-based (any version)

Replication

● Physical, aka Streaming Replication

● Logical Replication
○ Sort of built-in, >= 9.4

○ Trigger-based (any version)

● “Your Herd of Elephants” … Tomorrow, 12:30

Shared Buffers in RAM

Tables on Disk

WAL Stream Server B

Let’s Get Physical

I Lied

You can cp -r
Kind of…

… With some specific settings in place..

And only when you tell Postgres.

Anatomy of a Base Backup

1. Must have configured:
a. wal_level = replica (or logical)

b. archive_mode = on
c. archive_command = ‘cp %p /var/wal_archive/%f’

2. SELECT pg_start_backup(‘label’);
3. cp -r (or, something more respectable)

4. SELECT pg_stop_backup();

Anatomy of a Base Backup

1. pg_start_backup(‘foo’)
a. Set a start marker

b. Checkpoint….

c. Return

2. Now we can copy at our leisure

3. pg_stop_backup()
a. Wait for all archival to complete

b. Clean up

Shared Buffers in RAM

Tables on Disk

Anatomy of a Base Backup

1. pg_start_backup(‘foo’)
a. Set a start marker

b. Checkpoint….

c. Return

2. Now we can copy at our leisure

3. pg_stop_backup()
a. Wait for all archival to complete

b. Clean up

Or...

$ pg_basebackup

Uses the replication protocol..
Connection must have REPLICATION permission

&&

max_wal_senders must have room.

So…?

Shared Buffers in RAM

Tables on Disk

WAL Stream Server B

Shared Buffers in RAM

Tables on Disk

WAL Archive

Base Backup

WAL Archive

Point-In-Time Recovery

PITR

Base Backup

WAL Archive

Stop @ 2019-04-29 14:15:00-07

● pgBackRest

● Barman

● PGHoard

● WAL-E

● WAL-G

● (etc, etc)

Now that I’ve told you all that...

Look for…

● Cloud storage integration

● Encryption

● Management interfaces

● Storage efficiency

● Retention

● Scheduling...

Logical Backups with
pg_dump

pg_dump

● Generates a series of SQL statements to rebuild a database

pg_dump

● Generates a series of SQL statements to rebuild a database

● Works over a normal Postgres connection

● Works with the permissions it has, no special settings

● Selective, single database, or parts of it

● Output is text

pg_dump

● Generates a series of SQL statements to rebuild a database

● Works over a normal Postgres connection

● Works with the permissions it has, no special settings

● Selective, single database, or parts of it

● Output is text

● pg_dumpall == pg_dumpall --globals + pg_dump (-C)

But…

● No way to apply transaction logs

● And, harder to optimize performance

● Similarly, restores are slow(er)

Output is text (...sometimes)

● pg_dump --format=c (custom) … or d (directory)

● --format=d --jobs=X allows for parallel dumps!

● Both allows for parallel restore

● Either way, pg_restore to read and generate the SQL

● With pg_dump-like flexibility

That’s It

Keeping your data secure:

● Replication (Tune in tomorrow)

● Physical backups

Base backup + WAL transaction logs

● Logical backups

pg_dump, pg_dumpall, pg_restore

?

