
Get It Back

A New PostgreSQL Admin’s Guide to
Redundancy and Recovery



Why should I listen to Josh?

● Dev&&Ops at End Point Corporation

● Postgres for (mumble)-teen years
● Or don’t?



Backing Up Postgres



Backing Up Postgres - Don’t Do This

$ while :
>     cp -r /var/lib/postgresql /var/lib/postgresql.bak
>     sleep 3600
> done



Backing Up Postgres - Don’t Do This

$ while :; do
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Replication

● Physical, aka Streaming Replication

● Logical Replication
○ Sort of built-in, >= 9.4

○ Trigger-based (any version)

● “Your Herd of Elephants” … Tomorrow, 12:30
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Let’s Get Physical



I Lied

You can cp -r
Kind of…

… With some specific settings in place..

And only when you tell Postgres.



Anatomy of a Base Backup

1. Must have configured:
a. wal_level = replica (or logical)

b. archive_mode = on
c. archive_command = ‘cp %p /var/wal_archive/%f’

2. SELECT pg_start_backup(‘label’);
3. cp -r (or, something more respectable)

4. SELECT pg_stop_backup();



Anatomy of a Base Backup

1. pg_start_backup(‘foo’)
a. Set a start marker

b. Checkpoint….

c. Return

2. Now we can copy at our leisure

3. pg_stop_backup()
a. Wait for all archival to complete

b. Clean up
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Or...

$ pg_basebackup

Uses the replication protocol..
Connection must have REPLICATION permission

&&

max_wal_senders must have room.



So…?
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Base Backup

WAL Archive



Point-In-Time Recovery

PITR



Base Backup

WAL Archive

Stop @ 2019-04-29 14:15:00-07



● pgBackRest

● Barman

● PGHoard

● WAL-E

● WAL-G

● (etc, etc)

Now that I’ve told you all that...

Look for…

● Cloud storage integration

● Encryption

● Management interfaces

● Storage efficiency

● Retention

● Scheduling...



Logical Backups with 
pg_dump
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pg_dump

● Generates a series of SQL statements to rebuild a database

● Works over a normal Postgres connection

● Works with the permissions it has, no special settings

● Selective, single database, or parts of it

● Output is text

● pg_dumpall == pg_dumpall --globals + pg_dump (-C)



But…

● No way to apply transaction logs

● And, harder to optimize performance

● Similarly, restores are slow(er)



Output is text (...sometimes)

● pg_dump --format=c (custom) … or d (directory)

● --format=d --jobs=X allows for parallel dumps!

● Both allows for parallel restore

● Either way, pg_restore to read and generate the SQL

● With pg_dump-like flexibility



That’s It

Keeping your data secure:

● Replication (Tune in tomorrow)

● Physical backups

Base backup + WAL transaction logs

● Logical backups

pg_dump, pg_dumpall, pg_restore



?


